PART.OI
PART.O2
本文所述内容参考了近期SCI论文的研究结果[2][1][8][3][20][25](具体见文中标注)。
[1] [4] [5] [6] [7] [9] [10] [11] [24]Machine learning approach for predicting electrical features of Schottkystructures with graphene and ZnTiO3 nanostructures doped in PVP interfacial layer | Scientific Reports
https://www.nature.com/articles/s41598-023-41000-z?error=cookies_not_supported&code=ef646237-aa4b-4f33-b162-65491b6cc9e7
[2] [3] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [25](PDF) Machine learning approach for predicting electrical features of Schottky structures with
graphene and ZnTiO3 nanostructures doped in PVP interfacial layer
https://www.researchgate.net/publication/373278025_Machine_learning_approach_for_predicting_electrical_features_of_Schottky_structures_with_graphene_and_ZnTiO3_nanostructures_doped_in_PVP_interfacial_layer
[8] Optimizing optical, dielectric, and electrical properties of polyvinyl alcohol/polyvinyl pyrrolidone/
poly(3,4-ethylene dioxythiophene) polystyrene sulfonate/NiO-based polymeric nanocomposites for
optoelectronic applications | Scientific Reports
https://www.nature.com/articles/s41598-024-76918-5?error=cookies_not_supported&code=6516f36c-a4a4-4e1f-8fabfac6f98d5874
[12] media.springernature.com
https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-023-41000-z/MediaObjects/41598_2023_41000_Fig2_HTML.png

PVP 业之先锋
021-50565706





